Nonlinear Magnetoelectric Response of Planar Ferromagnetic-Piezoelectric Structures to Sub-Millisecond Magnetic Pulses
نویسندگان
چکیده
The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate) and magnetostrictive (permendur or nickel) materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 µs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (~1-10 kOe) of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.
منابع مشابه
Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures
The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20-200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate t...
متن کاملMagnetoelectric interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices
Layered magnetostrictive-piezoelectric structures are multifunctional due to their dual-responsiveness to mechanical and electromagnetic forces. Here, we discuss studies of magnetoelectric (ME) interactions in ferrite-lead zirconate titanate (PZT) and terfenol-PZT material couples. Key findings include: (1) the observation of a giant lowfrequency ME effect in the layered systems; (2) data analy...
متن کاملMagnetic anisotropy and stacking faults in Co and Co84Pt16 epitaxially grown thin films
Related Articles Fast magnetization switching in GaMnAs induced by electrical fields Appl. Phys. Lett. 99, 242505 (2011) Electrical detection of nonlinear ferromagnetic resonance in single elliptical permalloy thin film using a magnetic tunnel junction Appl. Phys. Lett. 99, 232506 (2011) Loss of magnetization induced by doping in CeO2 films J. Appl. Phys. 110, 113902 (2011) Giant magnetoelectri...
متن کاملNon-Volatile Ferroelectric Switching of Ferromagnetic Resonance in NiFe/PLZT Multiferroic Thin Film Heterostructures
Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report fe...
متن کاملMagnetoelectric Multiferroic Composites
Magnetoelectric (ME) multiferroics are materials in which ferromagnetism and ferroelectricity occur simultaneously and coupling between the two is enabled. Applied magnetic field H gives rise to an induced polarization P which can be expressed in terms of magnetic field by the expression, P=┙H, where ┙ is the ME-susceptibility tensor. Most of the known single-phase ME materials are known to sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2012